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Abstract

Field equations of the non!local elasticity are solved to determine the state of stress in a plate with a
Gri.th crack subject to the anti!plane shear[ Then a set of dual!integral equations is solved using Schmidt|s
method[ Contrary to the classical elasticity solution\ it is found that no stress singularity is present at the
crack tip[ The signi_cance of this result is that the fracture criteria are uni_ed at both the macroscopic and
the microscopic scales[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In several previous papers "see e[g[ Eringen et al[\ 0866a^ Eringen\ 0867\ 0868#\ Eringen discussed
the state of stress near the tip of a sharp line crack in an elastic plate subject to uniform tension\
shear and anti!plane shear[ The _eld equations employed in the solution of these problems are
those of the theory of non!local elasticity[ The solutions obtained did not contain any stress
singularity\ thus resolving a fundamental problem that persisted over many years[ This enables us
to employ the maximum stress hypothesis to deal with fracture problems in a natural way\ and
also the non!local elasticity has a big potential to understand the behavior of composite materials[
However\ Eringen|s solution is not exact "see e[g[ Eringen\ 0868#[

In the present paper\ the same problem which was treated by Eringen "see e[g[ Eringen\ 0868# is
reworked using somewhat di}erent approach[ Fourier transform is applied and a mixed boundary
value problem is reduced to a set of dual!integral equations[ In solving the dual!integral equations\
the crack surface displacement is expanded in a series using Jacobi|s polynomials and Schmidt|s
method "see e[g[ Morse and Feshbach\ 0847# is used[ This process is quite di}erent from that
adopted in the paper of Eringen|s "see e[g[ Eringen\ 0868#[ The solution in this paper is more exact
and more reasonable than Eringen|s[ As expected\ it does not contain the stress singularity at the
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crack tip\ thus clearly indicating the physical nature of the problem\ namely\ in the vicinity of the
geometrical discontinuities in the body\ the non!local intermolecular forces are dominant[ For
such problems\ therefore\ one must resort to theories incorporating non!local e}ects\ at least in
the neighborhood of the discontinuities[ The stress along the crack|s line depends on the crack
length[

1[ Basic equations of non!local elasticity

Basic equations of linear\ homogeneous\ isotropic\ non!local elastic solids\ with vanishing body
force are "see e[g[ Eringen\ 0868#

tkl\k �9 "0#

tkl �gl?

ðl?"=X?−X=#err"X?#dkl¦1m?"=X?−X=#ekl"X?#Ł dV? "1#

ekl �
0
1
"uk\l¦ul\k# "2#

where the only di}erence from classical elasticity is in the stress constitutive eqns "1# in which the
stress tkl"X# at a point X depends on the strains ekl"X?#\ at all points of the body[ For homogeneous
and isotropic solids there exist only two material constants\ l?"=X?−X=# and m?"=X?−X=# which are
functions of the distance =X?−X=[ The integral in "1# is over the volume V of the body enclosed
within a surface 1V[ In this paper we employ Cartesian coordinates xk with the usual convention
that a free index takes the values "0\ 1\ 2#\ and repeated indices are summed over the range "0\ 1\ 2#[
Indices following a comma represent partial di}erentiation\ e[g[

uk\l � 1uk:1xj

In the papers "see e[g[ Eringen\ 0863\ 0866b#\ it can be obtained in the form of l?"=X?−X=# and
m?"=X?−X=# for which the dispersion curves of plane elastic waves coincide with those known in
lattice dynamics[ Among several possible curves the following has been found to be very useful

"l?\ m?# �"l\ m#a"=X?−X=# "3#

a"=X?−X=# � a9 exp ð−"b:a#1"X?−X#"X?−X#Ł "4#

where b is a constant\ a is the lattice parameter[ l and m are the Lame� constants of classical
elasticity[ a9 is determined by the normalization

gV

a"=X?−X=# dV"X?# � 0 "5#

In the present work\ the non!local elastic moduli was given by "3# and "4#[ Substituting "4# into
"5# it can be obtained\ in two dimensional space\

a9 �
0
p

"b:a#1 "6#

Substitution of eqns "3#Ð"4# into eqn "1# yields
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Fig[ 0[ Line crack subject to anti!plane shear[

tkl"X# � gV

a"=X?−X=#skl"X?# dV"X?# "7#

where

sij"X?# � lerr"X?#dij¦1meij"X?#

� lur\r"X?#dij¦mðui\ j"X?#¦uj\i"X?#Ł "8#

The expression "8# is the classical Hook|s law[

2[ The crack model

Consider an elastic plate in the "x0 � x\ x1 � y# plane weakened by a line crack of length 1l
along the x!axis[ The plate is subjected to a constant anti!plane shear stress tyz � t9 along the
surface of the crack "see Fig[ 0#[ For this problem\ it has

u0 � u1 � 9\ u2 � w"x\ y#

sxz � m
1w
1x

\ syz � m
1w
1y

\ all other skl � 9 "09#

The boundary conditions are "see e[g[ Eringen\ 0868#]

w"x\ 9# � 9\ for =x= × l "00#

tyz"x\ 9# � t9\ for =x= ¾ l "01#

w"x\ y# � 9 as "x1¦y1#0:1 :� "02#

Substituting eqn "8# into eqn "0#\ using GreenÐGauss theorem and equation "09#\ it can be obtained
"see e[g[ Eringen\ 0868#]

mgVg a"=x?−x=\ =y?−y=#9?1w"x?\ y?# dx? dy?−g
l

−l

a"=x?−x=\ =y=# ðsyz"x?\ 9#Ł dx? � 9 "03#

where the boldface bracket indicates a jump at the crack line[
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Under the applied anti!plane shear load on the unopened surfaces of the crack\ the displacement
_eld possesses the following symmetry regulations

w"x\−y# � −w"x\ y#

Using this in "8# we _nd that

ðsyz"x?\ 9#Ł � 9 "04#

Hence the line integral in "03# vanishes[ By taking the Fourier transform of "03# with respect to
x?\ it can be shown that the general solution of "03# is identical to that of

d1w¹ "s\ y#

dy1
−s1w¹ "s\ y# � 9 "05#

almost everywhere[ Here a superposed bar indicates the Fourier transform\ e[g[

f¹ "s\ y# � g
�

9

f "x\ y# exp"isx# dx

The general solution of eqn "05# "y − 9# satisfying "02# is]

w �
1
p g

�

9

A"s# e−sy cos"xs# ds "06#

where A"s# is to be determined from the boundary conditions[
The stress _eld\ according to "7#\ is given by

tyz � −
1m

p g
�

9

A"s#s ds g
�

9

dy? g
�

−�

ða"=x?−x=\ =y?−y=#

¦a"=x?−x=\ =y?¦y=#Ł e−sy cos"sx?# dx? "07#

Substituting for a from "4#\ according to the reference "see e[g[ Eringen\ 0868# and the boundary
conditions "00# and "01#\ it can be obtained

g
�

9

sA"s#erfc"os# cos"sx# ds � −
pt9

1m
\ 9 ¾ x ¾ l "08#

g
�

9

A"s# cos"sx# ds � 9\ x × l "19#

where

o �
a
1b

\ erfc"z# � 0−F"z#\ F"z# �
1

zp g
z

9

exp"−t1# dt "10#

Since the only di}erence between the classical and non!local equations is in the introduction of the
function erfc"os#\ it is logical to utilize the classical solution to convert the system "08# and "19# to
an integral equation of the second kind which is generally better behaved[ For a � 9\ then
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erfc"os# � 0 and eqns "08# and "19# reduce to the dual integral equations for same problem in
classical elasticity[ To determine the unknown function A"s#\ the dual!integral eqns "08# and "19#
must be solved[

3[ Solution of the dual!integral equation

The dual eqns "08# and "19# can not be transformed into the second Fredholm integral equation
"see e[g[ Eringen\ 0868#\ because the kernel of the second kind Fredholm integral equation in the
paper of Eringen "0868# is divergent[ The kernel of the second kind Fredholm integral equation in
Eringen|s paper "0868# can be written as follows]

L"x\ u# �"xu#0:1 g
�

9

tk"ot#J9"xt#J9"ut# dt\ 9 ¾ x\u ¾0 "11#

where Jn"x# is the Bessel function of order n[

k"ot# � −F"ot#\ F"z# � 1p0:1 g
z

9

exp"−t1# dt "12#

lim
t:�

k"ot# � 9 for o �
a

1bl
�9 "13#

J9"x# ¼X
1
px

cos 0x−
0
3

p1 for x Ł 9 "14#

The limit of tk"ot#J9"xt#J9"ut# does not equal to zero for t : �[ So the kernel L"x\ u# in Eringen|s
paper is divergent "see e[g[ Eringen\ 0868#[ Of course\ the dual integral equations can be considered
to be a single integral equation of the _rst kind with a discontinuous kernel "see e[g[ Eringen\
0866#[ It is well!known in the literature that integral equations of the _rst kind are generally ill!
posed in sense of Hadamard\ i[e[ small perturbations of the data can yield arbitrarily large changes
in the solution[ This makes the numerical solution of such equations quite di.cult[ For overcoming
the di.cult\ the Schmidt method "see e[g[ Morse and Feshbach\ 0847# is used to solve the dual!
integral eqns "08# and "19#[ The displacement w was represented by the following series]

w"x\ 9# � s
�

n�0

anP
"0:1\0:1#
1n−1 0

x
l1 00−

x1

l11
0:1

\ for 9 ¾ =x= ¾ l "15#

w"x\ 9# � 9\ for l ¾ =x= "16#

where an are unknown coe.cients to be determined and P "0:1\0:1#
n "x# is a Jacobi polynomial "see

e[g[ Erdelyi\ 0843#[ The Fourier cosine transform for eqn "15# is "see e[g[ Erdelyi\ 0843#

A"s# � w¹ "s\ 9# � s
�

n�0

anBnJ1n−0"ls#s−0\ "17#

where
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Bn � 1zp"−0#n−0

G01n−0
11

"1n−1#;
"18#

where G"x# and Jn"x# are the Gamma and Bessel functions\ respectively[
Substitution of eqn "17# into eqns "08# and "19#\ respectively\ eqn "19# has been automatically

satis_ed by using the Fourier transform[ Then the remaining eqn "08# reduces to the form for x ¾ l

s
�

n�0

anBn g
�

9

erfc"os#J1n−0"ls# cos"sx# ds � −
pt9

1m
"29#

For a large s\ the integrands of eqn "29# almost decrease exponentially[ So the semi!in_nite integral
in eqn "29# can be evaluated numerically by Filon|s method "see e[g[ Amemiya and Taguchi\ 0858#[
Thus eqn "08# can be solved for coe.cients an by the Schmidt method "see e[g[ Morse and
Feshbach\ 0847#[ For brevity\ eqn "29# can be rewritten as

s
�

n�0

anEn"x# � U"x#\ 9 ¾ x ¾ l "20#

where En"x# and U"x# are known functions and coe.cients an are unknown and will be determined[
A set of functions Pn"x# which satisfy the orthogonality condition

g
l

9

Pm"x#Pn"x# dx � Nndmn\ Nn � g
l

9

P1
n "x# dx "21#

can be constructed from the function\ En"x#\ such that

Pn"x# � s
n

i�0

Min

Mnn

Ei"x# "22#

where Min is the cofactor of the element din of Dn\ which is de_ned as

Dn �

K

H

H

H

H

H

H

H

H

k

d00\ d01\ d02\ [ [ [ \ d0n

d10\ d11\ d12\ [ [ [ \ d1n

d20\ d21\ d22\ [ [ [ \ d2n

[ [ [

[ [ [

[ [ [

dn0\ dn1\ dn2\ [ [ [ \ dnn

L

H

H

H

H

H

H

H

H

l

\ din � g
l

9

Ei"x#En"x# dx "23#

Using eqns "20#Ð"23#\ it can be obtained

an � s
�

j�n

qj

Mnj

Mjj

"24#

with
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Table 0

Values of s
09

n�0

anEn"x#:
pt9

1m
and U"x#:

pt9

1m
for a:1bl � 9[9994

x:l s
09

n�0

anEn"x#:
pt9

1m
U"x#:

pt9

1m

9[44 −9[099298E¦90 −0[9
9[59 −9[099420E¦90 −0[9
9[64 −9[884230E¦99 −0[9
9[79 −9[099328E¦90 −0[9
9[89 −9[885170E¦99 −0[9
9[84 −9[091429E¦90 −0[9
9[85 −9[091794E¦90 −0[9
9[86 −9[091252E¦90 −0[9
9[87 −9[887490E¦99 −0[9
9[88 −9[758895E¦99 −0[9

qj �
0
Nj g

l

9

U"x#Pj"x# dx "25#

4[ Numerical calculations and discussion

For a check of accuracy\ the values of

s
09

n�0

anEn"x#

and U"x# are given in Table 0 in the cases of a:1bl � 9[9994[ In Table 1\ the values of the coe.cients
an are given for a:1bl � 9[9994[

From about the results and references "see e[g[ Itou\ 0867\ 0868#\ it can be seen that the Schmidt
method is performed satisfactorily if the _rst ten terms of in_nite series to eqn "20# are retained[
The behavior of the maximum stress stays steady with the increasing number of terms in "15#[
When coe.cients an are known\ the entire stress _eld is obtainable[ However\ in fracture mechanics\
it is of importance to determine stress tyz along the crack line[ tyz at y � 9 is given as follows]

tyz � −
1m

p
s
�

n�0

anBn g
�

9

erfc"os#J1n−0"ls# cos"sx# ds "26#

For o � 9 at x � l we have the classical stress singularity[ However\ so long as o � 9\ "26# gave a
_nite stress all along y � 9[ At 9 ³ x ³ l\ tyx:t9 is very close to unity\ and for x × l\ tyx:t9 possesses
_nite values diminishing from a maximum value at x � l to zero at x � �[ Since o:l × 0:099
represents a crack length of less than 09−5 cm\ and such submicroscopic sizes other serious
questions arise regarding the interatomic arrangements and force laws\ the solution was not
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Table 1
Values of an:

pt9

1m
for a:1bl � 9[9994

n an:
pt9

1m

0 −9[207587E¦99
1 −9[016098E−90
2 9[697044E−91
3 9[063265E−91
4 9[016905E−91
5 −9[021740E−92
6 −9[469472E−93
7 −9[870434E−93
8 −9[095430E−93

09 −9[471730E−94

Fig[ 1[ Anti!plane shear stress[

pursued at such small crack sizes[ The stress is computed numerically for Poisson|s ratio n � 9[18[
The semi!in_nite numerical integrals\ which occur\ are evaluated easily by Filon and Simpson|s
methods "see e[g[ Amemiya and Taguchi\ 0858# because of the rapid diminution of the integrands[
Because the integrands of eqns "20# and "26# are complex\ the shear stress along the crack face has
a slight variation[ The results are plotted in Figs 1Ð6[

The following observations are made]

"i# The maximum shear stress occurs at the crack tip\ and it is _nite[ Contrary to the classical
elasticity solution\ it is found that no stress singularity is present at the crack tip[

"ii# The shear stress at the crack tip becomes in_nite as the atomic distance a : 9[ This is the
classical continuum limit of square root singularity[
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Fig[ 2[ Anti!plane shear stress[

Fig[ 3[ Anti!plane shear stress[

Fig[ 4[ Anti!plane shear stress[
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Fig[ 5[ Anti!plane shear stress[

Fig[ 6[ Anti!plane shear stress[

"iii# For the a:b � constant\ viz\ the atomic distance does not change\ the values of the stress
concentrations "at the crack tip# becomes higher with the increase of the crack length[ Note
this fact\ experiments indicate that materials with smaller cracks are more resistant to fracture
than those with larger cracks "see e[g[ Eringen\ 0868#[

"iv# The signi_cance of this result is that the fracture criteria are uni_ed at both the macroscopic
and microscopic scales[

"v# The stress concentration occurs at the crack tip\ and this is given by

tyz"l\ 9#:t9 � c2:za:"1bl#

where c2 converges to c2 ¼ 9[272[
"vi# The present results converge to the classical ones when far away from the crack tip[
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